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Quick review on the SABR model and the SABR formula
Lognormal fractional SABR (fSABR) model
o A bridge representation for probability density of lognormal
fSABR
e Small time approximations of option premium and implied
volatility in lognormal fSABR framework
e Heuristic sample path large deviation principle

Target volatility option (TVOs) pricing in lognormal fSABR

e Decomposition formula
e Approximations of the price of a TV call

Conclusion
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Stochastic aSp (SABR) model

Stochastic a8p (SABR) model was suggested and investigated by
Hagan-Lesniewski-Woodward as

dS; = SPa(pdB; + pdWs),  So ='s;

day =vardB:, ag=a«

where B; and W; are independent Brownian motions,
p=+/1-p2
@ SABR model is market standard for quoting cap and swaption

volatilities using the SABR formula for implied volatility.
Nowadays also used in FX and equity markets.

@ 3 =0 is referred to as normal SABR
e 3 =1 is referred to as lognormal SABR



SABR formula

The SABR formula is a small time asymptotic expansion up to first

order for the implied volatilities of call/put option induced by the

SABR model.
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SABR formula - zeroth order

The zeroth order SABR formula is obtained by matching the
exponents

2
(log sy —log K)
2 (sp.20) e

e” 21 ~C(K, T)=Cps(K, T)~e 28s
thus,
llog sp — log K|
di(s0,0)

where d, is the minimal distance from the initial point (sg, ag) to
the half plane {(s,a) : s > K}.

UBS(Ka T) ~



SABR
[ee]eY Tolelele]

Why fractional process?

Gatheral-Jaisson-Rosenbaum observed from empirical data that

@ Log-volatility behaves as a fractional Brownian Motion with
Hurst exponent H of order 0.1 at any reasonable time scale.
Indeed, they fitted the empirical gth moments m(q, A) in
various lags A to

E[llogorin — logoe|7] = KA

proxied by daily realized variance estimates. K, denotes the
gth moment of standard normal.

@ At-the-money volatility skew is well approximated by a power
law function of time to expiry



Gatheral-Jaisson-Rosenbaum

Log-volatility behaves as a fractional Brownian Motion with Hurst
exponent H of order 0.1 at any reasonable time scale
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Gatheral-Jaisson-Rosenbaum

Log-log plot of m(q,A) versus A for various q.

log m(a. A)

log A
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Gatheral-Jaisson-Rosenbaum

At-the-money volatility skew () = | %‘k:O ops(k, )| is well
approximated by a power law function of time to expiry 7
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Figure 1.2: The black dots are non-parametric estimates of the S&P ATM
volatility skews as of June 20, 2013; the red curve is the power-law fit (1) =
At
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Fractional volatility process

The observations suggest the following model for instantaneous
volatility

o = aoe”BtH,
where B is a fractional Brownian motion with Hurst exponent H.
As stationarity of o; is concerned, GJR suggested the model for
instantaenous volatility as o; = oo€e™t where

dX; = a(m — X;)dt + vdB!!

is a fractional Ornstein-Uhlenbeck process. Again, drift term plays
no role in large deviation regime.
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Review: fractional Brownian motion

A mean-zero Gaussian process B} is called a fractional Brownian
motion with Hurst exponent H € [0, 1] if its autocovariance
function R(t,s), for t,s > 0, satisfies

R(t,s) :=E {Bf’Bs”} _1 <t2H + 52 — |t — sy2H) .

2

B' is self-similar, indeed, BH g al'Bl for a>0

B has stationary increments

2

°
°

e B is a standard Brownian motion when H = 1
o B! is neither a semimartingale nor Markovian unless H = %
°

B! is Holder of order 3 for any 3 < H almost surely



Lognormal fSABR model

Consider the following lognormal fSABR model

dS

?t = O[t(det + ﬁth),
t

ar = age”Bt

where B; and W; are independent Brownian motions,

p=+/1—p2 Bl is a fractional Brownian motion with Hurst
exponent H driven by B;:

ot
BtH:/ Ky(t, s)dBs.
0

Ky is the Molchan-Golosov kernel.

@ Goal: to obtain an easy to access expression for the joint
density of (S¢, ay).
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Slightly more explicit form

Defining the new variables X; = log S; and Y; = a;, we may
rewrite the lognormal fSABR model in a slightly more explicit form
as

t Y2 t
X — Xo = Yo / e'B (pdB, + pdWs) — - / 2B ds,
0 0

Yt YQ e

@ We derive a bridge representation for the joint density of
(Xt, Yt) in a “Fourier space”.
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Bridge representation for joint density

The joint density of (X:, Y;) has the following bridge representation

p(ta Xt7yt|X07.y0)

77%

e_ 20,2+2H 1

— X X
YtV 27”/2 t2H 27

2
; t vBH 0]
. — dBs+
/e’(xt_xo)5 E el< plo yoe ™ Bt vz>5

where i = /~1, vy = f e2B:' ds and n; = Iog

_ 52)’3 vt 52
e 2

vBf = m] de,
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Bridge representation in uncorrelated case

The bridge representation for the joint density of (X¢, Y;) reads
simpler when p = 0:

p(ta Xt7.yt|X07y0)

n?

RS o
Yt 27TV2 t2H 0

. t H
where | = v/ —1, vy = fo e?VBs'ds and n; = log %

vBY = | de.
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McKean kernel

The McKean kernel pga(t, xt, yt|x0, yo) reads

pH2(t)Xt7yt|Xan0) -

\@e—t/s 00 66—52/21? J
(2nt)3/2 /d v/cosh& — cosh d &

where d = d(x, yt; X0, o) is the geodesic distance from (x¢, y:) to
(X07.y0)'

@ Note that the McKean kernel is a density with respect to the
Riemannian volume form }%dxtdyt.
t

@ The bridge representation can be regarded as a generalization

of the McKean kernel.

@ Indeed, in the case where H = % v=1and p=0,

lkeda-Matsumoto showed how to recover the McKean kernel.



Expanding around by

We expand the conditional expectation in the bridge representation
around the deterministic path bs. Let E,,[[] = E [-[vBf = n].
First, define the deterministic path bs by

bs = log E,, [ez”BSH} .
Indeed,

bs = |Og Eﬂt[em/B:I] = 2VET]t[BsH] + 2V2var77t[BsH]
= 2R(1,u)n: + 22¢2H {uZH — R%(1, u)} ,

where u = 2 and R(t,s) = E [Bf'Bl].

H .
o Note that ePs = E,, [ez”Bs } In other words, e’ is an

. . H .
unbiased estimator of €25’ conditioned on vBf = ;.
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Now expand the conditional expectation in the bridge
representation around the deterministic path bs as

Er, e_é(f_i)gfotygezysgds}
— e‘%(ﬁ—i)ﬁfotygebsdsEm |:e_%(§_’.)f fot)’§ <e2yBy—eb5>ds

~ e 3ENEfs Bt ds o 11 1 o(1)).
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Substituting the last expansion into bridge representation we

obtain the following expansion (in the Fourier space) in terms of
the Hy functions as

P(t7Xt7,Vt|XO7}/O)
1 nt

yeV2m2t2H

e 20,2¢2H X
1

% ell(Xt—XO)s e_%(.f—i)E\A/t {1 + 0(1)} dg’

Q

~ t
where 0y = [y ygePds.
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Small time asymptotics - uncorrelated

To the lowest order as t — 0, the density p has the following small
time asymptotic behaviour

2
n? _ (xx—x0)
e 202:2A e 2y§0t

yeV2mu2¢2H \/27ry0 A

Xt —XQ

e 2 {l1+4+0(1)},

p(tuxt).yt|X07.y0) -

. t
where recall that 0; = [; ebsds.
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Probability density in small time - correlated case

For the correlated case, define the functions Crx and Cer by

1 1
Crr (1) == / eRLWN K, (1, u)du,  Cer(n) ::/ e?RLum gy,
0 0
To the lowest order we have

p(ta Xt)yt|XOa.yO)

2
1_
! X ! _22% X 1 _2Y§Vt (xt—xo—pyoCRK(nt)%ﬁ H)
~ _— B — vét e
2m  yu2e2H YoV Vi

where V; = tip(n;) = {CeR(Ut) - PZC/%K(Wt)} t.
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Approximate distance function

Rewrite the joint density p as

p(t7 Xt7.yt|X07.yO)

1 1 o 3% (xt,yt1%0.%0)
H

1
- — e 242
27y 12t2H Yo/

~
~

where

2 2

uh 1 Xt — X0 Nt

d(xt, ye|x0, y0) = —5 + ( - pyoCRK(nt))
v2 o ygp(ne) \ e2—H v

is regarded as the approximate “distance function”.
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Convexity of approximate distance function

Contour plot of approximate distance function Contour plot of approximate distance H = 0.75
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Figure: The contour plots. Parameters p = —-0.7, v =1, yy =1, t = 0.5.
H = 0.75 on the right; H = 0.25, on the left.



Implied volatility approximation by bridge representation

By matching with the Black-Scholes price to the lowest order, we
obtain a small time approximation of the implied volatility as
follows. Let o = % — H and k = log g

Implied volatility approximation

k2 | n? 1 k 7 2) ™
2 * %

Tag ™ — 4 =t ——— [ = = ( Ne)—

BS T2a {1/2 Y§¢(77*) (TO‘ PYo RK( ) I/) }

where 7, is the minimizer

5 2
. n 1 k n
N =argminsn e R: — + < —P}/OCRK(U)> :
{ v2 o gy(n) \ T v

Note that n, = 7, (%)




Approximate implied volatility plots - 1

1SABR implied volatilty, t= 0.01 1SABR implied volatilty, t= 1
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Figure: The implied volatility curves. t = 0.01 on the left, t = 1 on the
right. Parameters are set as p = —0.06867, v = 0.58, oy = 0.13927.
H=0.1inred, H=0.3in orange, H = % in green, H = 0.7 in blue,
H = 0.9 in purple.



Approximate implied volatility plots - 2

fSABR implied volatility, t = 0.01 fSABR implied volatility, t = 1
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Figure: The implied volatility curves. t = 0.01 on the left, t = 1 on the
right. Parameters are set as p = —0.4, v =0.58, ap = 0.38. H=10.1in
red, H=0.3 in orange, H = % in green, H = 0.7 in blue, H=0.9 in
purple.
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

SABR formula

—vk v
UBS(k) ~ m, ¢= _OTOk’

o IR C
1—p i

where

D(¢)
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

A: NO!

SABR formula

—vk v
UBS(k) ~ m, ¢= _OTOk’

o IR C
1—p i

where

D(¢)
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Graphic comparison with SABR formula

Figure: The implied volatility curves from SABR and fSABR formula.
Parameters are set as 7 =1, p = —0.06867, v = 0.58, oy = 0.13927.
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

A: NO!

@ Q: Maybe a smarter choice of bs might work?
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

A: NO!
@ Q: Maybe a smarter choice of bs might work?

A: Unfortunately, doesn't really work that way either.
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

A: NO!
@ Q: Maybe a smarter choice of bs might work?
A: Unfortunately, doesn't really work that way either.

@ Q: Is it even possible to recover the SABR formula from the
bridge representation?
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Recovery of SABR formula?

@ Q: Does it recover the SABR formula to the lowest order
when H = %?

A: NO!
@ Q: Maybe a smarter choice of bs might work?
A: Unfortunately, doesn't really work that way either.

@ Q: Is it even possible to recover the SABR formula from the
bridge representation?

A: Most-likely-path from bridge representation
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Large deviations principle for fSABR

We haveas T — 0
— |OgP[Xt = Xt, Yt =Vt for t e [O7 T]]

1T ) 1",
~ 5 ) W(Xt—pytbt) dt+§ 0 btdt

t

where b € L2[0, T] satisfying

t
ne = log yy — log yo = 1// Kn(t,s)bsds
0

for t € [0, T].
This should be the rate function for sample path LDP.



Heuristic LDP
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1

Recovery of Freidlin-Wentzell when H = 3

Indeed,
L.
be =~ Ky ().
When H = % K,;l is simply the usual differential operator, thus

_ e _ 1y

voovye

Therefore, the rate function reduces to

— IOg]P)[Xt = Xt, Yt =Vt for t € [0, T]]

T . 2 T . 2

=) (o) o [ (0)
IRV 2.2 o

= 2/0 527%2 (1/ Xg —2p1/xtyt—|—yt) dt

which recovers the classical large deviations principle of

Freidlin-Wentzell

b:
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Implied volatility approximation by LDP

Again, by matching with the Black-Scholes price, we obtain
fSABR formula

-1

Gy B k—z /T 1 (X — pyibl)? + bi2dt
T 5 52}’;2 t t Dt t )

where (x*, b*) is the minimizer
T
(x*, b*) = argmin {)’(, be L0, T]: / — 5 (Xt — pyebe)® + bfdt}
0 PVt
with x7 = k and y; is given by, for t € [0, T],
t
log y; — log yo = 1// Ku(t,s)b:ds
0

This recovers the SABR formula when H = 5!

N[ =
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Pricing of Target Volatility Option in fSABR
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Target volatility option

Target Volatility Option (TVO)

@ is a type of derivative instrument that explicitly depends on
the evolution of an underlying asset as well as its realized
volatility

@ allows one to set a target volatility parameter that determines
the leverage of an otherwise price dependent payoff

@ is an option whose multiplicative leverage factor is the ratio of
the target volatility to the realized volatility of the underlying
asset at maturity
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Target volatility call

A TV call at expiry pays off

(St K e
T — =
L7 o2dt V) YEdt

where & is the (preassigned) target volatility level.

e —

aVTK (XT 1)+7

@ Apparently, if at expiry the realized volatility is higher (lower)
than the target volatility, the payoff is scale down (up) by the
ratio between target volatility and realized volatility.

We will temporarily ignore the factor v/ T K hereafter for
simplicity.
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Normalized Black-Scholes function

The normalized Black-Scholes function C:
C(x,w) = €*N(c1) — N(d2)

where d1:ﬁ+@and drp = di —/w.
e C satisfies the (forward) Black-Scholes PDE

1 1
CW - §Cxx - §CX

with initial condition C(x,0) = (X — 1)*.
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For any t € [0, T], define
t
Wy = / Y2ds (total variance up to time t)
0
T
Wy = Et/ Y2ds (expected total variance from t to T)
t
-
M; :=E. / Y2ds.
0

Note that M; is a martingale and M; = w; + w;.



A decomposition formula for TV call

By applying Itd's formula to the process ﬁC(Xt, W), we obtain

for t € [0, T]
1 X; +
A/ WT (e _1>
1 T ¢, ds T c
= C(Xe, W, +/ X _=° +/ Y_dM.
VM, (Xe, i) e VMs Ss e VMg T
- /T<— &4 CXW>d<M X)
: 2(VMs)3 /M e

+ /T (— Cw + 3¢ - Conw )d(l\/l)
; 2(VMs)3  8(vVMs)5  2/M; *
The formula suggests a model independent theoretical replicating

strategy for TV call, assuming the availability of all variance swaps
and swaptions.




A decomposition formula for TV call

Taking conditional expectation of the last equation on both sides
yields

t :/tT <‘2(¢ax75)3 + i) A

v o[ T (‘2(;%)3 + st o) ).

@ If the driving Brownian motions are uncorrelated, the second
term on the right hand side vanishes.
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Approximation of TV call - zeroth order

As t — T, by dropping the last two terms we obtain

E, [\/% <eXT - 1) +] ~ \/}\/TtC(Xt, W)

@ The approximation is exact in the deterministic volatility case.

@ In words, to zeroth order at time t, the price of a TV call
struck K with expiry T is given by the price of a vanilla call
with total variance given by the variance swap between t and
T, rescaled by the quantity of the sum of the realized variance
from 0 to t and the variance swap between t and T.

@ Notice that the zeroth order approximation is independent of

p. In fact, it is model independent, assuming variance swap is
a market observable.



Martingale representation for M,

Assuming fSABR, by applying the Clark-Ocone formula, M; has
following martingale representation

M, Mo + / 2v / Y2\f3 (r,s)drdBs

= M0+2VY02// E e2”Br”
0 Js

E {er‘ J,—_-tB} — YO2€2l/m(r|t)+21/2v(r|t)

m(r|t) = Bt/o K(r,s)ds,

.7-"5] K(r,s)drdBs,

s

where

t

iy =2 =1 ([ ksyas)

2
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Thus,

2

d(M), = 41 (/TIE [Yf}fﬂ K(r, t)dr) dt,
d(X, M), ( /TE YQ\fB (r, t)dr> dt.

It follows that

2

t T
<M>t _ 41/2/ (/ Y02€21/m(r|s)+2y2v(r|s)K(r’ S)dl’) ds,
0 s

t T
(X, M)¢ = 27//)/ / Ys Yozezl’m("s)ﬁl’%('ls)K(r, s)drds.
0 Js

e Note that m(-|s) is a Gaussian process; whereas v(:|-) is
deterministic.
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Approximation of TV call - first order

As t — T, we have
]
+ (g + s + o ) B Td<M>s] ,

where C and all its partial derivatives are evaluated at (X;, ;).
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Approximation of TV call at time t =0

In particular, at t = 0 the approximation simplifies slightly as

ST

C Cx Cew

777+ (arvamy + v Bl 07

n (_ Cw n 3C n Cow
N NI

where C and all its partial derivatives are evaluated at (Xo, Mp).

)EIM)1,



Conclusion

@ We show a bridge representation for the joint density of the
lognormal SABR model.

@ Small time asymptotics to the lowest order are presented for
option price and implied volatility.
@ We show a heuristic derivation of large deviations principle

which recovers the classical Freidlin-Wentzell large deviations
principle when H = %

@ We obtain a decomposition formula for TV calls which
suggests a theoretical model independent replicating strategy.

@ Approximations of TV call price are obtained by “freezing the
coefficient” .
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