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Stochastic αβρ (SABR) model

Stochastic αβρ (SABR) model was suggested and investigated by
Hagan-Lesniewski-Woodward as

dSt = Sβt αt(ρdBt + ρ̄dWt), S0 = s;

dαt = ναtdBt , α0 = α

where Bt and Wt are independent Brownian motions,
ρ̄ =

√
1− ρ2.

SABR model is market standard for quoting cap and swaption
volatilities using the SABR formula for implied volatility.
Nowadays also used in FX and equity markets.

β = 0 is referred to as normal SABR

β = 1 is referred to as lognormal SABR
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SABR formula

The SABR formula is a small time asymptotic expansion up to first
order for the implied volatilities of call/put option induced by the
SABR model.

σBS(K , τ) = ν
log(s/K )

D(ζ)
{1 + O(τ)}

as the time to expiry τ approaches 0. D and ζ are defined
respectively as

D(ζ) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
and

ζ =


ν
α

s1−β−K1−β

1−β if β 6= 1;

ν
α log

(
s
K

)
if β = 1.
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SABR formula - zeroth order

The zeroth order SABR formula is obtained by matching the
exponents

e−
d2
∗(s0,α0)

2T ≈ C (K ,T ) = CBS(K ,T ) ≈ e
− (log s0−log K)2

2σ2
BS

T

thus,

σBS(K ,T ) ≈ |log s0 − logK |
d∗(s0, α0)

.

where d∗ is the minimal distance from the initial point (s0, α0) to
the half plane {(s, α) : s ≥ K}.
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Why fractional process?

Gatheral-Jaisson-Rosenbaum observed from empirical data that

Log-volatility behaves as a fractional Brownian Motion with
Hurst exponent H of order 0.1 at any reasonable time scale.
Indeed, they fitted the empirical qth moments m(q,∆) in
various lags ∆ to

E [|log σt+∆ − log σt |q] = Kq∆ζq

proxied by daily realized variance estimates. Kq denotes the
qth moment of standard normal.

At-the-money volatility skew is well approximated by a power
law function of time to expiry
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Gatheral-Jaisson-Rosenbaum

Log-volatility behaves as a fractional Brownian Motion with Hurst
exponent H of order 0.1 at any reasonable time scale
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Gatheral-Jaisson-Rosenbaum

Log-log plot of m(q,∆) versus ∆ for various q.
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Gatheral-Jaisson-Rosenbaum

At-the-money volatility skew ψ(τ) =
∣∣ d
dk

∣∣
k=0

σBS(k, τ)
∣∣ is well

approximated by a power law function of time to expiry τ
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Fractional volatility process

The observations suggest the following model for instantaneous
volatility

σt = σ0e
νBH

t ,

where BH is a fractional Brownian motion with Hurst exponent H.
As stationarity of σt is concerned, GJR suggested the model for
instantaenous volatility as σt = σ0e

Xt where

dXt = α(m − Xt)dt + νdBH
t

is a fractional Ornstein-Uhlenbeck process. Again, drift term plays
no role in large deviation regime.
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Review: fractional Brownian motion

A mean-zero Gaussian process BH
t is called a fractional Brownian

motion with Hurst exponent H ∈ [0, 1] if its autocovariance
function R(t, s), for t, s > 0, satisfies

R(t, s) := E
[
BH
t BH

s

]
=

1

2

(
t2H + s2H − |t − s|2H

)
.

BH is self-similar, indeed, BH
at

d
= aHBH

t for a > 0

BH has stationary increments

BH
t is a standard Brownian motion when H = 1

2

BH
t is neither a semimartingale nor Markovian unless H = 1

2

BH
t is Hölder of order β for any β < H almost surely
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Lognormal fSABR model

Consider the following lognormal fSABR model

dSt
St

= αt(ρdBt + ρ̄dWt),

αt = α0e
νBH

t ,

where Bt and Wt are independent Brownian motions,
ρ̄ =

√
1− ρ2. BH

t is a fractional Brownian motion with Hurst
exponent H driven by Bt :

BH
t =

∫ t

0
KH(t, s)dBs .

KH is the Molchan-Golosov kernel.

Goal: to obtain an easy to access expression for the joint
density of (St , αt).
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Slightly more explicit form

Defining the new variables Xt = log St and Yt = αt , we may
rewrite the lognormal fSABR model in a slightly more explicit form
as

Xt − X0 = Y0

∫ t

0
eνB

H
s (ρdBs + ρ̄dWs)− Y 2

0

2

∫ t

0
e2νBH

s ds,

Yt = Y0e
νBH

t .

We derive a bridge representation for the joint density of
(Xt ,Yt) in a “Fourier space”.
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Bridge representation for joint density

The joint density of (Xt ,Yt) has the following bridge representation

p(t, xt , yt |x0, y0)

=
e
− η2

t
2ν2t2H

yt
√

2πν2t2H
× 1

2π
×

∫
e i(xt−x0)ξE

[
e
i

(
−ρ
∫ t

0 y0eνB
H
s dBs+

y2
0
2
vt

)
ξ
e−

ρ̄2y2
0 vt

2
ξ2

∣∣∣∣∣ νBH
t = ηt

]
dξ,

where i =
√
−1, vt =

∫ t
0 e2νBH

s ds and ηt = log yt
y0

.
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Bridge representation in uncorrelated case

The bridge representation for the joint density of (Xt ,Yt) reads
simpler when ρ = 0:

p(t, xt , yt |x0, y0)

=
e
− η2

t
2ν2t2H

yt
√

2πν2t2H
× 1

2π

∫
e i(xt−x0)ξE

[
e−

1
2

(ξ−i)ξy2
0 vt
∣∣∣ νBH

t = ηt

]
dξ,

where i =
√
−1, vt =

∫ t
0 e2νBH

s ds and ηt = log yt
y0

.
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McKean kernel

The McKean kernel pH2(t, xt , yt |x0, y0) reads

pH2(t, xt , yt |x0, y0) =

√
2e−t/8

(2πt)3/2

∫ ∞
d

ξe−ξ
2/2t

√
cosh ξ − cosh d

dξ,

where d = d(xt , yt ; x0, y0) is the geodesic distance from (xt , yt) to
(x0, y0).

Note that the McKean kernel is a density with respect to the
Riemannian volume form 1

y2
t
dxtdyt .

The bridge representation can be regarded as a generalization
of the McKean kernel.

Indeed, in the case where H = 1
2 , ν = 1 and ρ = 0,

Ikeda-Matsumoto showed how to recover the McKean kernel.
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Expanding around bs

We expand the conditional expectation in the bridge representation
around the deterministic path bs . Let Eηt [·] = E

[
·|νBH

t = ηt
]
.

First, define the deterministic path bs by

bs = logEηt
[
e2νBH

s

]
.

Indeed,

bs = logEηt [e2νBH
s ] = 2νEηt [BH

s ] + 2ν2var ηt [B
H
s ]

= 2R(1, u)ηt + 2ν2t2H
{
u2H − R2(1, u)

}
,

where u = s
t and R(t, s) = E

[
BH
t BH

s

]
.

Note that ebs = Eηt
[
e2νBH

s

]
. In other words, ebs is an

unbiased estimator of e2νBH
s conditioned on νBH

t = ηt .
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Now expand the conditional expectation in the bridge
representation around the deterministic path bs as

Eηt
[
e−

1
2

(ξ−i)ξ
∫ t

0 y2
0 e

2νBH
s ds

]
= e−

1
2

(ξ−i)ξ
∫ t

0 y2
0 e

bs dsEηt
[
e
− 1

2
(ξ−i)ξ

∫ t
0 y2

0

(
e2νBH

s −ebs
)
ds
]

≈ e−
1
2

(ξ−i)ξ
∫ t

0 y2
0 e

bs ds × {1 + o(1)} .
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Substituting the last expansion into bridge representation we
obtain the following expansion (in the Fourier space) in terms of
the Hk functions as

p(t, xt , yt |x0, y0)

≈ 1

yt
√

2πν2t2H
e
− η2

t
2ν2t2H ×

1

2π

∫
e i(xt−x0)ξ e−

1
2

(ξ−i)ξv̂t {1 + o(1)} dξ,

where v̂t =
∫ t

0 y2
0 e

bsds.
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Small time asymptotics - uncorrelated

To the lowest order as t → 0, the density p has the following small
time asymptotic behaviour

p(t, xt , yt |x0, y0) =
e
− η2

t
2ν2t2H

yt
√

2πν2t2H

e
− (xt−x0)2

2y2
0
v̂t√

2πy2
0 v̂t

e
xt−x0

2 {1 + o(1)} ,

where recall that v̂t =
∫ t

0 ebsds.
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Probability density in small time - correlated case

For the correlated case, define the functions CRK and CeR by

CRK (η) :=

∫ 1

0
eR(1,u)ηKH(1, u)du, CeR(η) :=

∫ 1

0
e2R(1,u)ηdu.

To the lowest order we have

p(t, xt , yt |x0, y0)

≈ 1

2π
× 1

yt
√
ν2t2H

e
− η2

t
2ν2t2H × 1

y0
√
ṽt
e
− 1

2y2
0
ṽt

(
xt−x0−ρy0CRK (ηt)

ηt
ν
t

1
2−H

)2

where ṽt = tψ(ηt) :=
{
CeR(ηt)− ρ2C 2

RK (ηt)
}
t.
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Approximate distance function

Rewrite the joint density p as

p(t, xt , yt |x0, y0)

≈ 1

2π

1

yt
√
ν2t2H

1

y0
√
ṽt
e
− d̃2(xt ,yt |x0,y0)

2t2H

where

d̃(xt , yt |x0, y0) :=
η2
t

ν2
+

1

y2
0ψ(ηt)

(
xt − x0

t
1
2
−H
− ρy0CRK (ηt)

ηt
ν

)2

is regarded as the approximate “distance function”.



SABR Bridge representation Small time approximations Heuristic LDP TVO pricing in fSABR

Convexity of approximate distance function

Contour plot of approximate distance function
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Figure: The contour plots. Parameters ρ = −0.7, ν = 1, y0 = 1, t = 0.5.
H = 0.75 on the right; H = 0.25, on the left.
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Implied volatility approximation by bridge representation

By matching with the Black-Scholes price to the lowest order, we
obtain a small time approximation of the implied volatility as
follows. Let α = 1

2 − H and k = log K
s0

.

Implied volatility approximation

σ2
BS ≈

k2

T 2α

{
η2
∗
ν2

+
1

y2
0ψ(η∗)

(
k

Tα
− ρy0CRK (η∗)

η∗
ν

)2
}−1

where η∗ is the minimizer

η∗ = argmin

{
η ∈ R :

η2

ν2
+

1

y2
0ψ(η)

(
k

Tα
− ρy0CRK (η)

η

ν

)2
}
.

Note that η∗ = η∗
(

k
Tα

)
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Approximate implied volatility plots - 1
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Figure: The implied volatility curves. t = 0.01 on the left, t = 1 on the
right. Parameters are set as ρ = −0.06867, ν = 0.58, α0 = 0.13927.
H = 0.1 in red, H = 0.3 in orange, H = 1

2 in green, H = 0.7 in blue,
H = 0.9 in purple.
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Approximate implied volatility plots - 2
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Figure: The implied volatility curves. t = 0.01 on the left, t = 1 on the
right. Parameters are set as ρ = −0.4, ν = 0.58, α0 = 0.38. H = 0.1 in
red, H = 0.3 in orange, H = 1

2 in green, H = 0.7 in blue, H = 0.9 in
purple.
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Recovery of SABR formula?

Q: Does it recover the SABR formula to the lowest order
when H = 1

2 ?

A: NO!

SABR formula

σBS(k) ≈ −νk
D(ζ)

, ζ = − ν

α0
k,

where

D(ζ) = log

√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ
.
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Recovery of SABR formula?

Q: Does it recover the SABR formula to the lowest order
when H = 1

2 ?

A: NO!

SABR formula

σBS(k) ≈ −νk
D(ζ)

, ζ = − ν

α0
k,

where

D(ζ) = log

√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ
.
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Graphic comparison with SABR formula
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Figure: The implied volatility curves from SABR and fSABR formula.
Parameters are set as τ = 1, ρ = −0.06867, ν = 0.58, α0 = 0.13927.
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Recovery of SABR formula?

Q: Does it recover the SABR formula to the lowest order
when H = 1

2 ?

A: NO!

Q: Maybe a smarter choice of bs might work?

A: Unfortunately, doesn’t really work that way either.

Q: Is it even possible to recover the SABR formula from the
bridge representation?

A: Most-likely-path from bridge representation
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Large deviations principle for fSABR

We have as T → 0

− logP [Xt = xt ,Yt = yt for t ∈ [0,T ]]

≈ 1

2

∫ T

0

1

ρ̄2y2
t

(ẋt − ρytbt)2 dt +
1

2

∫ T

0
b2
t dt

where b ∈ L2[0,T ] satisfying

ηt = log yt − log y0 = ν

∫ t

0
KH(t, s)bsds

for t ∈ [0,T ].
This should be the rate function for sample path LDP.
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Recovery of Freidlin-Wentzell when H = 1
2

Indeed,

bt =
1

ν
K−1
H [η](t).

When H = 1
2 , K−1

H is simply the usual differential operator, thus

bt =
η̇t
ν

=
1

ν

ẏt
yt
.

Therefore, the rate function reduces to

− logP [Xt = xt ,Yt = yt for t ∈ [0,T ]]

=
1

2

∫ T

0

1

ρ̄2y2
t

(
ẋt − ρyt

η̇t
ν

)2

dt +
1

2

∫ T

0

(
η̇t
ν

)2

dt

=
1

2

∫ T

0

1

ρ̄2ν2y2
t

(
ν2ẋ2

t − 2ρνẋt ẏt + ẏ2
t

)
dt

which recovers the classical large deviations principle of
Freidlin-Wentzell
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Implied volatility approximation by LDP

Again, by matching with the Black-Scholes price, we obtain

fSABR formula

σ2
BS ≈

k2

T

(∫ T

0

1

ρ̄2y∗t
2

(ẋ∗t − ρy∗t b∗t )2 + b∗t
2dt

)−1

,

where (x∗, b∗) is the minimizer

(x∗, b∗) = argmin

{
ẋ , b ∈ L2[0,T ] :

∫ T

0

1

ρ̄2y2
t

(ẋt − ρytbt)2 + b2
t dt

}
with xT = k and y∗t is given by, for t ∈ [0,T ],

log y∗t − log y0 = ν

∫ t

0
KH(t, s)b∗s ds

This recovers the SABR formula when H = 1
2 !
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Pricing of Target Volatility Option in fSABR
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Target volatility option

Target Volatility Option (TVO)

is a type of derivative instrument that explicitly depends on
the evolution of an underlying asset as well as its realized
volatility

allows one to set a target volatility parameter that determines
the leverage of an otherwise price dependent payoff

is an option whose multiplicative leverage factor is the ratio of
the target volatility to the realized volatility of the underlying
asset at maturity
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Target volatility call

A TV call at expiry pays off

σ̄√
1
T

∫ T
0 σ2

t dt
(ST − K )+ =

σ̄
√
TK√∫ T

0 Y 2
t dt

(
eXT − 1

)+
,

where σ̄ is the (preassigned) target volatility level.

Apparently, if at expiry the realized volatility is higher (lower)
than the target volatility, the payoff is scale down (up) by the
ratio between target volatility and realized volatility.

We will temporarily ignore the factor σ̄
√
TK hereafter for

simplicity.
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Normalized Black-Scholes function

The normalized Black-Scholes function C :

C (x ,w) = exN(d1)− N(d2)

where d1 = x√
w

+
√
w

2 and d2 = d1 −
√
w .

C satisfies the (forward) Black-Scholes PDE

Cw =
1

2
Cxx −

1

2
Cx

with initial condition C (x , 0) = (ex − 1)+.
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For any t ∈ [0,T ], define

wt :=

∫ t

0
Y 2
s ds (total variance up to time t)

ŵt := Et

∫ T

t
Y 2
s ds (expected total variance from t to T )

Mt := Et

∫ T

0
Y 2
s ds.

Note that Mt is a martingale and Mt = wt + ŵt .
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A decomposition formula for TV call

By applying Itô’s formula to the process 1√
Mt

C (Xt , ŵt), we obtain

for t ∈ [0,T ]

1
√
wT

(
eXT − 1

)+

=
1√
Mt

C (Xt , ŵt) +

∫ T

t

Cx√
Ms

dSs
Ss

+

∫ T

t

Cw√
Ms

dMs

+

∫ T

t

(
− Cx

2(
√
Ms)3

+
Cxw√
Ms

)
d〈M,X 〉s

+

∫ T

t

(
− Cw

2(
√
Ms)3

+
3C

8(
√
Ms)5

+
Cww

2
√
Ms

)
d〈M〉s .

The formula suggests a model independent theoretical replicating
strategy for TV call, assuming the availability of all variance swaps
and swaptions.
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A decomposition formula for TV call

Taking conditional expectation of the last equation on both sides
yields

Et

[
1
√
wT

(
eXT − 1

)+
]

=
1√
Mt

C (Xt , ŵt)

+ Et

[∫ T

t

(
− Cx

2(
√
Ms)3

+
Cxw√
Ms

)
d〈M,X 〉s

]
+ Et

[∫ T

t

(
− Cw

2(
√
Ms)3

+
3C

8(
√
Ms)5

+
Cww

2
√
Ms

)
d〈M〉s

]
.

If the driving Brownian motions are uncorrelated, the second
term on the right hand side vanishes.
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Approximation of TV call - zeroth order

As t → T , by dropping the last two terms we obtain

Et

[
1
√
wT

(
eXT − 1

)+
]
≈ 1√

Mt
C (Xt , ŵt)

The approximation is exact in the deterministic volatility case.

In words, to zeroth order at time t, the price of a TV call
struck K with expiry T is given by the price of a vanilla call
with total variance given by the variance swap between t and
T , rescaled by the quantity of the sum of the realized variance
from 0 to t and the variance swap between t and T .

Notice that the zeroth order approximation is independent of
ρ. In fact, it is model independent, assuming variance swap is
a market observable.
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Martingale representation for Mt

Assuming fSABR, by applying the Clark-Ocone formula, Mt has
following martingale representation

Mt = M0 +

∫ t

0
2ν

∫ T

s
E
[
Y 2
r

∣∣FB
s

]
K (r , s)drdBs

= M0 + 2νY 2
0

∫ t

0

∫ T

s
E
[
e2νBH

r

∣∣∣FB
s

]
K (r , s)drdBs ,

where

E
[
Y 2
r

∣∣FB
t

]
= Y 2

0 e
2νm(r |t)+2ν2v(r |t)

m(r |t) =
Bt

t

∫ t

0
K (r , s)ds,

v(r |t) = r2H − 1

t

(∫ t

0
K (r , s)ds

)2

.
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Thus,

d〈M〉t = 4ν2

(∫ T

t
E
[
Y 2
r

∣∣FB
t

]
K (r , t)dr

)2

dt,

d〈X ,M〉t = 2νρ

(
Yt

∫ T

t
E
[
Y 2
r

∣∣FB
t

]
K (r , t)dr

)
dt.

It follows that

〈M〉t = 4ν2

∫ t

0

(∫ T

s
Y 2

0 e
2νm(r |s)+2ν2v(r |s)K (r , s)dr

)2

ds,

〈X ,M〉t = 2νρ

∫ t

0

∫ T

s
YsY

2
0 e

2νm(r |s)+2ν2v(r |s)K (r , s)drds.

Note that m(·|s) is a Gaussian process; whereas v(·|·) is
deterministic.
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Approximation of TV call - first order

As t → T , we have

Et

[
1
√
wT

(
eXT − 1

)+
]

≈ C√
Mt

+

(
− Cx

2(
√
Mt)3

+
Cxw√
Mt

)
Et

[∫ T

t
d〈M,X 〉s

]
+

(
− Cw

2(
√
Mt)3

+
3C

8(
√
Mt)5

+
Cww

2
√
Mt

)
Et

[∫ T

t
d〈M〉s

]
,

where C and all its partial derivatives are evaluated at (Xt , ŵt).
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Approximation of TV call at time t = 0

In particular, at t = 0 the approximation simplifies slightly as

E
[

1
√
wT

(
eXT − 1

)+
]

≈ C√
M0

+

(
− Cx

2(
√
M0)3

+
Cxw√
M0

)
E [〈M,X 〉T ]

+

(
− Cw

2(
√
M0)3

+
3C

8(
√
M0)5

+
Cww

2
√
M0

)
E [〈M〉T ] ,

where C and all its partial derivatives are evaluated at (X0,M0).
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Conclusion

We show a bridge representation for the joint density of the
lognormal SABR model.

Small time asymptotics to the lowest order are presented for
option price and implied volatility.

We show a heuristic derivation of large deviations principle
which recovers the classical Freidlin-Wentzell large deviations
principle when H = 1

2 .

We obtain a decomposition formula for TV calls which
suggests a theoretical model independent replicating strategy.

Approximations of TV call price are obtained by “freezing the
coefficient”.
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